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Anisotropic adaptation and multigrid for hybrid grids

Jens-Dominik Miiller

School of Aeronautical Engineering, Queen’s University Belfast, U.K.

SUMMARY

An anisotropic refinement method for 2D and 3D hybrid grids is presented and applied to viscous
flow problems. The algorithm is unique in that it is not limited to a particular grid structure, e.g.
hexahedral elements, but allows the anisotropic division of hexahedra and prisms in 3D, quadrilaterals
in 2D and the isotropic division of the other element types. At the core of the method is a novel surface
tessellation of an element with hanging nodes which guarantees mesh consistency also in the case of
arbitrary directional refinement over an arbitrary number of levels. The efficiency of the anisotropic
refinement algorithm is evaluated on viscous flow testcases. The resulting grid sequence is compared to
an element-collapse sequence for its suitability for directionally coarsened multigrid. Copyright © 2002
John Wiley & Sons, Ltd.

1. INTRODUCTION

Mesh adaptation has a long history in CFD [1]. However, it has not yet become a tech-
nique that is used routinely. One of the reasons is that the currently available algorithms
are isotropic, much simpler to implement but much less efficient for convectively dominated
flows. Of prime interest here are viscous flows with strong shear layers. Commercial packages
for unstructured mesh generation for viscous flows generally allow to specify only one global
thickness of the layer and a fixed number of elements across the layer. Isotropic adaptation
can be used to refine the grid in the normal direction but most of the refinement is wasted.
An efficient adaptive method for shear layers has to be able to refine directionally to adapt
the mesh to the anisotropy of the flow.

The hierarchy of adapted meshes lends itself straightforwardly for multigrid applications
[2-4]. In the case of the Navier—Stokes equations an efficient multigrid method requires
directionally coarsened grids to apply smoothing to the strongly coupled modes in the viscous
layer [5, 6]. Conversely, when using a sequence of adaptively refined grids for multigrid, the
grids have to be refined anisotropically. The combined technique then promises very good
convergence rates and robustness, since the coarsening is not based on the geometry but on
the flow. The results shown here are preliminary but where comparisons were possible, the
inverse-adaptive algorithm compared well against an unstructured semi-coarsening algorithm.

*Correspondence to: J.-D. Miiller, School of Aeronautical Engineering, Queen’s University Belfast, David Keir
Building, Stranmillis Road, Belfast BT9 5AG, U.K.

Received May 2001
Copyright © 2002 John Wiley & Sons, Ltd. Revised November 2001



446 J.-D. MULLER

They have been presented to emphasize the principal strengths and weaknesses of such an
approach and to make a case for further development of anisotropic hierarchic adaptation
methods. However, the main contribution of the paper is the anisotropic adaptation algorithm.

Anisotropic adaptation has seen very little work. One of the earliest works by Castro-Diaz
et al. is based on triangular grids [7]. Their technique uses point deletion or insertion on an
edge complemented by an edge-swapping and point movement technique. Robichaud et al
have extended this to 3D and claim an extension of this algorithm to hybrid grids but fail to
present details of their method [8]. For tetrahedral grids their method is robust and we would
advocate the use of a similar approach based on a combination of h-, r-refinement and face
swapping in the tetrahedral areas of the grid. Lahur and Nakamura have presented a method
for Cartesian grids suitable for the solution of the Euler equations [9]. Biswas and Strawn
have presented anisotropic refinement procedures for hexahedral grids that remove hanging
nodes by buffering with tetrahedra, prisms and pyramids [10]. Mavriplis has presented a ‘mod-
erately’ anisotropic adaptation method for hybrid grids that allows the cells of the finest level
to be refined directionally. If these cells require further refinement, the directional refinement
is replaced by an isotropic one [3]. None of the methods above attempts to produce a gen-
eral algorithm that works for hybrid grids and allows any number of anisotropic refinement
levels.

A much more general method for anisotropic refinement of hybrid grids has been developed
by the author and co-workers in Reference [11]. In that paper 2D results were presented
together with a cell-vertex discretization for elements with hanging nodes. The method bears
some similarities to Reference [10], but is based on a separation of the processes involved
in adaptation: the marking of edges, the hierarchical refinement of elements according to a
selected number of patterns, and the post-processing of interfaces with hanging nodes. One
of the contributions of Miiller et al. [11] is to make these processes independent of each
other. This minimizes propagation of the adaption and makes the adaptation independent of
the path. Propagation is problematic in that it can dramatically increase the mesh size and
in that it leads to additional communication in a parallel implementation. Path independence
is important in that previous directional refinements need not be undone in order to refine a
split element further or in a different direction.

Here the extension of the method is presented which is necessary to make it work in
three dimensions. The major problem that needs to be addressed is the possibility of ‘cross-
refinement’, a quadrilateral face shared by two elements which have been refined directionally
but in different directions. The adaptation algorithm must ensure that a consistent flux through
that face can be calculated. This problem has been dealt with in Reference [3] by limiting
the depth of anisotropic refinement to one level, which severely curtails the efficiency of
the adaptive algorithm and precludes it from being used in ‘reverse-mode’ for directionally
coarsened multigrid. Alternatively, as in Reference [10], one can ‘buffer’ the cross-refined
face by tesselating one of the neighbours with the insertion of a central node. This in turn
limits the flexibility and efficiency of the method and destroys the regularity of the grid.

A new approach to treating cross-refinement is presented here that is simple and does not
impose constraints on the choice of refinement nor the depth of levels. It is based rigorously on
the definition of four properties that the adaptation algorithm has to satisfy and the consistency
of the mesh is shown, i.e. the surfaces at the refinement interface are shown to match. The
algorithm allows arbitrary choice of adaptation direction for an unlimited number of levels, a
key requisite for using the adapted sequence in multigrid.
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There are still pieces missing to make this algorithm generally applicable. For one, this
work does not attempt to deal with the problem of surface reconstruction and the possible
mesh repair that has to be done if a surface point has been moved so much as to make
the mesh fold. Grid convergence studies with linear surface interpolation will converge to an
answer that depends on the coarse initial mesh which is different from the correct smooth
surface. Similarly it is not attempted here to perform quantitative comparisons of the accuracy
of the results between isotropic and anisotropic adaptation. It is known from the literature that
unweighted sensors based on first differences often perform poorly. These sensors are used
here, however, because of their simplicity. Future work will investigate the use of adjoint
sensors for anisotropic adaptation, preliminary work on this in the isotropic case has been
presented in Reference [12].

2. BASIC ADAPTATION ALGORITHM

Four paradigms underly our anisotropic adaptation algorithm (AAA).

1. There can be at most a difference of one level in refinement between neighbouring
elements. This limitation is adopted by nearly all adaptive methods and simplifies the
construction of conservative fluxes across these interfaces.

2. All edges selected for refinement by the user’s sensor must be refined in all elements.
The algorithm can add other edges to be refined in some elements only. This distinction
between required and non-required edges adds a large degree of flexibility and minimizes
propagation. It is a unique feature of the AAA.

3. The directional refinements must be orthogonal in the sense that they combine to an
isotropic one. This requirement makes the final grid independent of the way in which it
has been refined. It also ensures that the element quality does not degrade in recursive
refinements.

4. The surface tessellation of an element with hanging nodes is uniquely prescribed by the
distribution of hanging nodes around the faces. It recovers the edges of the elements that
may exist on either side of a face. This guarantees conservation by construction. Note
that this implies that the edges of elements touching on a face have to be recovered
by the node pattern on it. As shown below, this can be achieved in a simple way for
quadrilateral faces but cannot be guaranteed for directionally refined triangular ones.

In our implementation a scalar error indicator is calculated for each element, e.g. the maximum
of the first-order velocity differences along the edges. Either a fixed fraction of the elements
is derefined or refined or the elements below and above one mean deviation from the average.
With this initial list we can loop over the elements and select for each element a refinement
pattern from a predefined list that contains all required edges (cf. Figure 1).

These directional refinement patterns satisfy property 3, they sum to the isotropic one. The
refinement pattern that is applied to the element is chosen such as to refine all the edges
that are ‘required’, either because they are flagged by the sensor or they are needed due to
propagation, as explained below. The non-required edges which are needed to complete the
pattern are added to the list of refined edges. Note the difference between the required edges
which need to be refined in all elements and the completion edges which may be hanging in
a neighbouring element.
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Figure 1. The directional refinement patterns for 3D elements, appropriate rotations apply.
The isotropic patterns are uniquely defined (except for the choice for interior diagonal in a
tetrahedron) and are not shown.

Figure 2. Unique surface tessellations for faces with hanging nodes.

If a refinement edge is requested between the mid-node and one of the end-nodes of a
hanging edge there is a difference of two levels. In this case the parent edge needs to be
added to the list of required edges, ensuring that it will be refined in all elements and the
difference in levels is reduced to one. A loop over all elements to upgrade to the next
containing refinement pattern is executed until no more edges have been added.

At this stage each element is marked with a refinement pattern that is consistent with the
first three properties. Satisfying property 4 then leads by construction to a grid suitable for a
conservative discretisation: for each face that is shared by two elements we can identify the
unique surface tessellation by looking up the hanging edges in our list.

2.1. Tessellating the faces

The existence of a unique surface tessellation for each face depending on the distribution of
hanging nodes around it, property 4, is crucial for the algorithm. In two dimensions this is
trivial: an edge with a hanging node is split in two. In three dimensions we have to distin-
guish between triangular and quadrilateral faces. Figure 2 shows all possible combinations,
appropriate rotations apply.

A strictly limited propagation of refinement due to level differences in refinement has to
be accepted even in isotropic refinement. This propagation is needed to satisfy property 1,
at most one level difference in refinement between neighbours. Consider, e.g. two neighbours
with one having been refined. If this one is to be refined again, the algorithm has to refine
the neighbour as well, in order to limit the level difference.

Biswas and Strawn show an example of propagation due to different anisotropic refinement
directions [10]. Resolving this difference by reverting to isotropy would result in a propagation
of the isotropic refinement through the domain until a boundary is hit. In Reference [10] it
is resorted to buffer one of the elements by insertion of a central node in the gravity centre
of one of the elements and by connecting the faces to this centroid.

Here this contention is resolved by making the tessellation of the shared face uniquely
dependent of the distribution of hanging nodes around it, irrespective of the directional re-
finements that produced these nodes. In Figure 2 the reader might have noted the absence
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Figure 3. Cross-refinement of a quadrilateral face over two levels. First refinement on the left, second
refinement on the right. Hanging nodes shaded, surface tessellation dashed.

of the case with four hanging nodes around the perimeter and no central node on the face.
In this case a unique surface tessellation that recovers the elemental edges cannot be defined
(Figure 3). The AAA introduces a node at the centre of a quadrilateral face that has hanging
nodes on all four edges. The resulting surface tessellation then recovers the edges of the
children elements. This node can be a hanging one in all the cells it appears in.

The example in Figure 3 shows that ‘face’ has to be interpreted in a more general way
for the addition of the central node. We see in the left half of the figure a face shared
between two elements of which the left one has been refined directionally. At this stage there
is no problem and the configuration of hanging nodes around the face results in the unique
surface tessellation. For the next refinement stage the left child of the left element has been
refined directionally again, while the right element has been refined isotropically. The surface
tessellations differ when viewed from the left or from the right.

This is, of course, cured by the insertion of a central node. However, the face it is inserted
on does not form part of an element. It is split on both sides in different directions. To our
advantage this case can only occur on ‘half-faces’ of a parent element. Quarter faces are neces-
sarily the elemental face of a child. Thus, we have to include in our test for adding the central
node each quadrilateral face and all its four possible half-faces if the element is a parent.

It is much more difficult to achieve a unique tessellation for directionally refined triangular
faces. However, the directional refinement of a triangular face also violates the third property,
orthogonality of directional refinements. E.g. three directional splits of a triangle through each
side do not result in an isotropically divided one. Consequently, the algorithm is limited to
allow directional divisions of quadrilateral faces only, that is hexahedra and prisms in 3D. All
other elements will be subdivided isotropically. This, in practice, in not a severe restriction
since most mesh generation algorithms place layers of either prisms or hexahedra in boundary
layers to achieve elements with high aspect-ratios and good orthogonality.

3. RESULTS

3.1. Viscous NACA 0012 starting with an Euler mesh

To demonstrate the power of anisotropic adaptation the viscous flow over a NACA 0012
profile is calculated starting from an isotropic grid for Euler calculations. We do not advocate
such an approach, of course, since it is not an efficient procedure. However, anisotropic
adaptation is very suitable to adjust the mesh stretching in an arbitrary fashion.
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Figure 4. Anisotropic adaptation for viscous NACA 0012 airfoil, levels 0, 2, 4, 6. View of the airfoil
above, close-up near the shock below.

The freestream Mach number is 0.8, the angle of attack 1.25° and the Reynolds number
10°. The calculations have been done with the edge-based finite volume multigrid solver of
[6]. A first-order velocity difference was used as a refinement sensor in all of the cases. The
adaptation is based on first differences of velocity, with the refinement fraction rising from
15% to 60% for levels 1 through 6. The grids and solutions are shown in Figure 4, the final
solution is shown in Figure 5.

Figure 6 shows a comparison between the coarser levels used for the multigrid algorithm.
The regular grids on the left are the refined grids of level 3 and 4, the coarser ones are the
second and third level coarsened by applying element-collapsing [13] to the level 6 adapted
mesh. The convergence history with the two different sequences is compared in Figure 5.

The inverted sequence of refined meshes is able to coarsen the boundary layer more rapidly.
The coarsening algorithm on the other hand has no knowledge of the grid hierarchy, but has
to satisfy positive element volumes after each local collapse. Moreover, the element-collapsing
sees the buffered mesh while refinement works on the cleaner mesh with hanging nodes.

The situation is reversed in the farfield. The adaptive algorithm starts with a reasonably
fine Euler mesh and cannot coarsen beyond that. The element-collapsing coarsens the far-field
starting on the first coarser grid, applying coarsening everywhere in the grid and not just in
the refined regions. It is this global coarsening that is responsible for the superior convergence
of the element-collapse sequence in Figure 5.

The combination of the two algorithms in a zonal way promises to be very effective. An
initial solution can be obtained using a moderately stretched grid and a collapsed multigrid
sequence. The refinement generates patches of directionally refined grid which can be solved
for in zones [3]. The final solution will then be a composite of the unrefined zones on the
initial mesh and the finest level of refinement elsewhere.
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Figure 5. Mach contours and convergence histories for the viscous NACA 0012.

Figure 6. Multigrid levels 2 and 3 for the grid of level refinement 6 for the NACA 0012 from left.
Adaptive hierarchy on the left, element-collapsing on the right.

3.2. Viscous RAE 2822

This testcase looks at the efficiency of the directional adaptation in 2D and compares the
accuracy with isotropic refinement. The initial mesh for this testcase is a hybrid grid with the
quadrilateral portion derived from a fine structured grid with 353 x 65 nodes that has been
coarsened to 177 x 33. The freestream Mach number is 0.725, the angle of attack 2.4° and
the Reynolds number 6.5 x 10°.

The boundary surface is not recovered for the examples in this section but interpolated as
a piecewise linear. The initial mesh is already highly stretched and it is very likely that a
boundary node when moved onto the actual surface will create a folded element with negative
volume. Linear interpolation limits the levels of adaptation to one or two; otherwise the
refinement process would quite correctly resolve expansion fans at the kinks in the geometry.
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Figure 7. RAE 2822 airfoil, Ma 0.725, o 2.4°, Re 6.5 x 10°. Initial grid, first anisotropic, second
anisotropic and first isotropic refinement from the left.

Table I. Refinement of the RAE airfoil."

Level Refined Children Added Total Buffered
0 7240 7240
Aniso 1 987 2176 1189 8429 8700
Aniso 2 2847 11276 12865
Iso 1 987 3948 2203 10201 11102

TTotal grid size is the size with hanging nodes, buffered is the size when hanging nodes
have been removed.

Figure 7 shows the grids. The refinement threshold was set to one mean deviation above
the average velocity difference along an edge, resulting in a refinement of 14% of the cells
for the first and 34% on the second level. As can be seen from Table I, the first anisotropic
refinement adds only 40% of the elements of the isotropic refinement, the second level grid
with anisotropic refinement is comparable in size with the first level isotropic one. 77% of
the elements were refined anisotropically for the level 1 grid.

Figure 8 compares the ¢, contours for the different refined grids with a fine grid one based
on the 333 x 65 hybrid grid which recovers the surface in all boundary nodes. It can be seen
that apart from the resolution of the shock the results are very similar, the initial grid with
7240 elements is already very good. The ¢, curves in the shock of the first level refinements
with isotropic and anisotropic refinement are nearly identical, at 30% extra cost, the second
level anisotropic is slightly more accurate. Since the surface is not recovered, we cannot
expect to converge towards the fine grid solution.

3.3. Generic low pressure turbine

This example is a very coarse hexahedral grid around a generic low pressure turbine.
A cross-section at mid-span is shown in Figure 9. Close-ups of the trailing edge are shown in
Figure 10. The flow is steady on the initial grid but becomes unsteady due to vortex shedding
around the blunt trailing edge in the adapted meshes that have a smaller artificial viscosity
due to the finer mesh. This precludes a quantative comparison of the results and of the con-
vergence history. The testcase is presented to show that the adaptation algorithm does work
in three dimensions.
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Figure 8. RAE 2822 airfoil, Ma 0.725, o 2.4°, Re 6.5 x 10°.
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Figure 9. Generic low pressure turbine. Grid cross section and Mach contours at half-span.

Thirty per cent of the elements have been adapted based on velocity differences. Table II
shows the sizes of the adapted grids. The anisotropic refinement added only a fifth of the
elements compared to the isotropic refinement, after buffering the grid size was less than half.
The second level grid with anisotropic refinement is smaller than the isotropic first level one.
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Figure 10. Two levels of anisotropic refinement compared to two levels of coarsening from the refined
grid. The coarsening approach results in a better multigrid sequence in the farfield.

Table II. Generic low pressure turbine.

Level Added hex Tet Pyr Pri Hex Total
0 95760 95760
Iso 1 201089 95545 118131 6122 279473 499271
Aniso 1 38201 57678 54796 0 122937 235411
Aniso 2 147967 150491 46 159664 458168

"The leftmost column lists the number of added elements before buffering, the ones to the
right the element counts of the grids after buffering.

Figure 10 shows the initial grid and two levels of refinement. All of the refinement occurred
in the boundary layer, leaving large parts of the far-field unchanged, favouring a combined
zonal approach for the multigrid.

4. CONCLUSIONS

An adaptation algorithm has been presented that allows anisotropic refinement of hexahedra
and prisms without restrictions of level or order. The crucial ingredient of the algorithm is
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the definition of a unique surface tessellation that depends only on the hanging nodes of the
element. The insertion of a hanging node on faces that are fully refined on the perimeter
ensures a unique surface tessellation also in the case of refinement in different directions on
either side of the face. Using this local test it can be guaranteed that the mesh is globally
consistent.

Comparisons of the anisotropic and isotropic refinements for various viscous flow cases
show the efficiency of anisotropic adaptation. The refinement of boundary layers results in
near 80% of all elements being refined anisotropically. For a 3D viscous case with a very
coarse boundary layer discretisation the anisotropic strategy adds only 1 of the elements as
compared to the isotropic one. In both 2D and 3D the second level anisotropically refined
grid was comparable in size to the first level isotropic one.

It was also investigated how the resulting hierarchy of ‘semi-refined’ grids could be used
for ‘semi-coarsened’ multigrid. The refinement sequence was compared to a sequence resulting
from applying a directional element-collapsing algorithm to the adaptively refined grids. It has
been shown that the two approaches have very complementary advantages and disadvantages.
The element-collapsing coarsens also in the far-field, but the coarsening stalls after 3—4 levels.
The inverted refinement sequence by construction has a perfect coarsening of the boundary
layer, retaining the quality of the original grid throughout. It never coarsens beyond the initial
grid, however, leading to too fine a grid in the far field. Future work will investigate the
combination of the two approaches in a zonal method.
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