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Anisotropic adaptation and multigrid for hybrid grids
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SUMMARY

An anisotropic re�nement method for 2D and 3D hybrid grids is presented and applied to viscous
�ow problems. The algorithm is unique in that it is not limited to a particular grid structure, e.g.
hexahedral elements, but allows the anisotropic division of hexahedra and prisms in 3D, quadrilaterals
in 2D and the isotropic division of the other element types. At the core of the method is a novel surface
tessellation of an element with hanging nodes which guarantees mesh consistency also in the case of
arbitrary directional re�nement over an arbitrary number of levels. The e�ciency of the anisotropic
re�nement algorithm is evaluated on viscous �ow testcases. The resulting grid sequence is compared to
an element-collapse sequence for its suitability for directionally coarsened multigrid. Copyright ? 2002
John Wiley & Sons, Ltd.

1. INTRODUCTION

Mesh adaptation has a long history in CFD [1]. However, it has not yet become a tech-
nique that is used routinely. One of the reasons is that the currently available algorithms
are isotropic, much simpler to implement but much less e�cient for convectively dominated
�ows. Of prime interest here are viscous �ows with strong shear layers. Commercial packages
for unstructured mesh generation for viscous �ows generally allow to specify only one global
thickness of the layer and a �xed number of elements across the layer. Isotropic adaptation
can be used to re�ne the grid in the normal direction but most of the re�nement is wasted.
An e�cient adaptive method for shear layers has to be able to re�ne directionally to adapt
the mesh to the anisotropy of the �ow.
The hierarchy of adapted meshes lends itself straightforwardly for multigrid applications

[2–4]. In the case of the Navier–Stokes equations an e�cient multigrid method requires
directionally coarsened grids to apply smoothing to the strongly coupled modes in the viscous
layer [5, 6]. Conversely, when using a sequence of adaptively re�ned grids for multigrid, the
grids have to be re�ned anisotropically. The combined technique then promises very good
convergence rates and robustness, since the coarsening is not based on the geometry but on
the �ow. The results shown here are preliminary but where comparisons were possible, the
inverse-adaptive algorithm compared well against an unstructured semi-coarsening algorithm.
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They have been presented to emphasize the principal strengths and weaknesses of such an
approach and to make a case for further development of anisotropic hierarchic adaptation
methods. However, the main contribution of the paper is the anisotropic adaptation algorithm.
Anisotropic adaptation has seen very little work. One of the earliest works by Castro-D��az

et al. is based on triangular grids [7]. Their technique uses point deletion or insertion on an
edge complemented by an edge-swapping and point movement technique. Robichaud et al.
have extended this to 3D and claim an extension of this algorithm to hybrid grids but fail to
present details of their method [8]. For tetrahedral grids their method is robust and we would
advocate the use of a similar approach based on a combination of h-, r-re�nement and face
swapping in the tetrahedral areas of the grid. Lahur and Nakamura have presented a method
for Cartesian grids suitable for the solution of the Euler equations [9]. Biswas and Strawn
have presented anisotropic re�nement procedures for hexahedral grids that remove hanging
nodes by bu�ering with tetrahedra, prisms and pyramids [10]. Mavriplis has presented a ‘mod-
erately’ anisotropic adaptation method for hybrid grids that allows the cells of the �nest level
to be re�ned directionally. If these cells require further re�nement, the directional re�nement
is replaced by an isotropic one [3]. None of the methods above attempts to produce a gen-
eral algorithm that works for hybrid grids and allows any number of anisotropic re�nement
levels.
A much more general method for anisotropic re�nement of hybrid grids has been developed

by the author and co-workers in Reference [11]. In that paper 2D results were presented
together with a cell-vertex discretization for elements with hanging nodes. The method bears
some similarities to Reference [10], but is based on a separation of the processes involved
in adaptation: the marking of edges, the hierarchical re�nement of elements according to a
selected number of patterns, and the post-processing of interfaces with hanging nodes. One
of the contributions of M�uller et al. [11] is to make these processes independent of each
other. This minimizes propagation of the adaption and makes the adaptation independent of
the path. Propagation is problematic in that it can dramatically increase the mesh size and
in that it leads to additional communication in a parallel implementation. Path independence
is important in that previous directional re�nements need not be undone in order to re�ne a
split element further or in a di�erent direction.
Here the extension of the method is presented which is necessary to make it work in

three dimensions. The major problem that needs to be addressed is the possibility of ‘cross-
re�nement’, a quadrilateral face shared by two elements which have been re�ned directionally
but in di�erent directions. The adaptation algorithm must ensure that a consistent �ux through
that face can be calculated. This problem has been dealt with in Reference [3] by limiting
the depth of anisotropic re�nement to one level, which severely curtails the e�ciency of
the adaptive algorithm and precludes it from being used in ‘reverse-mode’ for directionally
coarsened multigrid. Alternatively, as in Reference [10], one can ‘bu�er’ the cross-re�ned
face by tesselating one of the neighbours with the insertion of a central node. This in turn
limits the �exibility and e�ciency of the method and destroys the regularity of the grid.
A new approach to treating cross-re�nement is presented here that is simple and does not

impose constraints on the choice of re�nement nor the depth of levels. It is based rigorously on
the de�nition of four properties that the adaptation algorithm has to satisfy and the consistency
of the mesh is shown, i.e. the surfaces at the re�nement interface are shown to match. The
algorithm allows arbitrary choice of adaptation direction for an unlimited number of levels, a
key requisite for using the adapted sequence in multigrid.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:445–455



REFINEMENT METHOD FOR 2D AND 3D HYBRID GRIDS 447

There are still pieces missing to make this algorithm generally applicable. For one, this
work does not attempt to deal with the problem of surface reconstruction and the possible
mesh repair that has to be done if a surface point has been moved so much as to make
the mesh fold. Grid convergence studies with linear surface interpolation will converge to an
answer that depends on the coarse initial mesh which is di�erent from the correct smooth
surface. Similarly it is not attempted here to perform quantitative comparisons of the accuracy
of the results between isotropic and anisotropic adaptation. It is known from the literature that
unweighted sensors based on �rst di�erences often perform poorly. These sensors are used
here, however, because of their simplicity. Future work will investigate the use of adjoint
sensors for anisotropic adaptation, preliminary work on this in the isotropic case has been
presented in Reference [12].

2. BASIC ADAPTATION ALGORITHM

Four paradigms underly our anisotropic adaptation algorithm (AAA).

1. There can be at most a di�erence of one level in re�nement between neighbouring
elements. This limitation is adopted by nearly all adaptive methods and simpli�es the
construction of conservative �uxes across these interfaces.

2. All edges selected for re�nement by the user’s sensor must be re�ned in all elements.
The algorithm can add other edges to be re�ned in some elements only. This distinction
between required and non-required edges adds a large degree of �exibility and minimizes
propagation. It is a unique feature of the AAA.

3. The directional re�nements must be orthogonal in the sense that they combine to an
isotropic one. This requirement makes the �nal grid independent of the way in which it
has been re�ned. It also ensures that the element quality does not degrade in recursive
re�nements.

4. The surface tessellation of an element with hanging nodes is uniquely prescribed by the
distribution of hanging nodes around the faces. It recovers the edges of the elements that
may exist on either side of a face. This guarantees conservation by construction. Note
that this implies that the edges of elements touching on a face have to be recovered
by the node pattern on it. As shown below, this can be achieved in a simple way for
quadrilateral faces but cannot be guaranteed for directionally re�ned triangular ones.

In our implementation a scalar error indicator is calculated for each element, e.g. the maximum
of the �rst-order velocity di�erences along the edges. Either a �xed fraction of the elements
is dere�ned or re�ned or the elements below and above one mean deviation from the average.
With this initial list we can loop over the elements and select for each element a re�nement
pattern from a prede�ned list that contains all required edges (cf. Figure 1).
These directional re�nement patterns satisfy property 3, they sum to the isotropic one. The

re�nement pattern that is applied to the element is chosen such as to re�ne all the edges
that are ‘required’, either because they are �agged by the sensor or they are needed due to
propagation, as explained below. The non-required edges which are needed to complete the
pattern are added to the list of re�ned edges. Note the di�erence between the required edges
which need to be re�ned in all elements and the completion edges which may be hanging in
a neighbouring element.
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Figure 1. The directional re�nement patterns for 3D elements, appropriate rotations apply.
The isotropic patterns are uniquely de�ned (except for the choice for interior diagonal in a

tetrahedron) and are not shown.

Figure 2. Unique surface tessellations for faces with hanging nodes.

If a re�nement edge is requested between the mid-node and one of the end-nodes of a
hanging edge there is a di�erence of two levels. In this case the parent edge needs to be
added to the list of required edges, ensuring that it will be re�ned in all elements and the
di�erence in levels is reduced to one. A loop over all elements to upgrade to the next
containing re�nement pattern is executed until no more edges have been added.
At this stage each element is marked with a re�nement pattern that is consistent with the

�rst three properties. Satisfying property 4 then leads by construction to a grid suitable for a
conservative discretisation: for each face that is shared by two elements we can identify the
unique surface tessellation by looking up the hanging edges in our list.

2.1. Tessellating the faces

The existence of a unique surface tessellation for each face depending on the distribution of
hanging nodes around it, property 4, is crucial for the algorithm. In two dimensions this is
trivial: an edge with a hanging node is split in two. In three dimensions we have to distin-
guish between triangular and quadrilateral faces. Figure 2 shows all possible combinations,
appropriate rotations apply.
A strictly limited propagation of re�nement due to level di�erences in re�nement has to

be accepted even in isotropic re�nement. This propagation is needed to satisfy property 1,
at most one level di�erence in re�nement between neighbours. Consider, e.g. two neighbours
with one having been re�ned. If this one is to be re�ned again, the algorithm has to re�ne
the neighbour as well, in order to limit the level di�erence.
Biswas and Strawn show an example of propagation due to di�erent anisotropic re�nement

directions [10]. Resolving this di�erence by reverting to isotropy would result in a propagation
of the isotropic re�nement through the domain until a boundary is hit. In Reference [10] it
is resorted to bu�er one of the elements by insertion of a central node in the gravity centre
of one of the elements and by connecting the faces to this centroid.
Here this contention is resolved by making the tessellation of the shared face uniquely

dependent of the distribution of hanging nodes around it, irrespective of the directional re-
�nements that produced these nodes. In Figure 2 the reader might have noted the absence
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Figure 3. Cross-re�nement of a quadrilateral face over two levels. First re�nement on the left, second
re�nement on the right. Hanging nodes shaded, surface tessellation dashed.

of the case with four hanging nodes around the perimeter and no central node on the face.
In this case a unique surface tessellation that recovers the elemental edges cannot be de�ned
(Figure 3). The AAA introduces a node at the centre of a quadrilateral face that has hanging
nodes on all four edges. The resulting surface tessellation then recovers the edges of the
children elements. This node can be a hanging one in all the cells it appears in.
The example in Figure 3 shows that ‘face’ has to be interpreted in a more general way

for the addition of the central node. We see in the left half of the �gure a face shared
between two elements of which the left one has been re�ned directionally. At this stage there
is no problem and the con�guration of hanging nodes around the face results in the unique
surface tessellation. For the next re�nement stage the left child of the left element has been
re�ned directionally again, while the right element has been re�ned isotropically. The surface
tessellations di�er when viewed from the left or from the right.
This is, of course, cured by the insertion of a central node. However, the face it is inserted

on does not form part of an element. It is split on both sides in di�erent directions. To our
advantage this case can only occur on ‘half-faces’ of a parent element. Quarter faces are neces-
sarily the elemental face of a child. Thus, we have to include in our test for adding the central
node each quadrilateral face and all its four possible half-faces if the element is a parent.
It is much more di�cult to achieve a unique tessellation for directionally re�ned triangular

faces. However, the directional re�nement of a triangular face also violates the third property,
orthogonality of directional re�nements. E.g. three directional splits of a triangle through each
side do not result in an isotropically divided one. Consequently, the algorithm is limited to
allow directional divisions of quadrilateral faces only, that is hexahedra and prisms in 3D. All
other elements will be subdivided isotropically. This, in practice, in not a severe restriction
since most mesh generation algorithms place layers of either prisms or hexahedra in boundary
layers to achieve elements with high aspect-ratios and good orthogonality.

3. RESULTS

3.1. Viscous NACA 0012 starting with an Euler mesh
To demonstrate the power of anisotropic adaptation the viscous �ow over a NACA 0012
pro�le is calculated starting from an isotropic grid for Euler calculations. We do not advocate
such an approach, of course, since it is not an e�cient procedure. However, anisotropic
adaptation is very suitable to adjust the mesh stretching in an arbitrary fashion.
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Figure 4. Anisotropic adaptation for viscous NACA 0012 airfoil, levels 0, 2, 4, 6. View of the airfoil
above, close-up near the shock below.

The freestream Mach number is 0.8, the angle of attack 1:25◦ and the Reynolds number
105. The calculations have been done with the edge-based �nite volume multigrid solver of
[6]. A �rst-order velocity di�erence was used as a re�nement sensor in all of the cases. The
adaptation is based on �rst di�erences of velocity, with the re�nement fraction rising from
15% to 60% for levels 1 through 6. The grids and solutions are shown in Figure 4, the �nal
solution is shown in Figure 5.
Figure 6 shows a comparison between the coarser levels used for the multigrid algorithm.

The regular grids on the left are the re�ned grids of level 3 and 4, the coarser ones are the
second and third level coarsened by applying element-collapsing [13] to the level 6 adapted
mesh. The convergence history with the two di�erent sequences is compared in Figure 5.
The inverted sequence of re�ned meshes is able to coarsen the boundary layer more rapidly.

The coarsening algorithm on the other hand has no knowledge of the grid hierarchy, but has
to satisfy positive element volumes after each local collapse. Moreover, the element-collapsing
sees the bu�ered mesh while re�nement works on the cleaner mesh with hanging nodes.
The situation is reversed in the far�eld. The adaptive algorithm starts with a reasonably

�ne Euler mesh and cannot coarsen beyond that. The element-collapsing coarsens the far-�eld
starting on the �rst coarser grid, applying coarsening everywhere in the grid and not just in
the re�ned regions. It is this global coarsening that is responsible for the superior convergence
of the element-collapse sequence in Figure 5.
The combination of the two algorithms in a zonal way promises to be very e�ective. An

initial solution can be obtained using a moderately stretched grid and a collapsed multigrid
sequence. The re�nement generates patches of directionally re�ned grid which can be solved
for in zones [3]. The �nal solution will then be a composite of the unre�ned zones on the
initial mesh and the �nest level of re�nement elsewhere.
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Figure 5. Mach contours and convergence histories for the viscous NACA 0012.

Figure 6. Multigrid levels 2 and 3 for the grid of level re�nement 6 for the NACA 0012 from left.
Adaptive hierarchy on the left, element-collapsing on the right.

3.2. Viscous RAE 2822

This testcase looks at the e�ciency of the directional adaptation in 2D and compares the
accuracy with isotropic re�nement. The initial mesh for this testcase is a hybrid grid with the
quadrilateral portion derived from a �ne structured grid with 353 × 65 nodes that has been
coarsened to 177 × 33. The freestream Mach number is 0.725, the angle of attack 2:4◦ and
the Reynolds number 6:5× 106.
The boundary surface is not recovered for the examples in this section but interpolated as

a piecewise linear. The initial mesh is already highly stretched and it is very likely that a
boundary node when moved onto the actual surface will create a folded element with negative
volume. Linear interpolation limits the levels of adaptation to one or two; otherwise the
re�nement process would quite correctly resolve expansion fans at the kinks in the geometry.
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Figure 7. RAE 2822 airfoil, Ma 0.725, � 2:4◦, Re 6:5 × 106. Initial grid, �rst anisotropic, second
anisotropic and �rst isotropic re�nement from the left.

Table I. Re�nement of the RAE airfoil.†

Level Re�ned Children Added Total Bu�ered

0 7240 7240
Aniso 1 987 2176 1189 8429 8700
Aniso 2 2847 11276 12865
Iso 1 987 3948 2203 10201 11102

†Total grid size is the size with hanging nodes, bu�ered is the size when hanging nodes
have been removed.

Figure 7 shows the grids. The re�nement threshold was set to one mean deviation above
the average velocity di�erence along an edge, resulting in a re�nement of 14% of the cells
for the �rst and 34% on the second level. As can be seen from Table I, the �rst anisotropic
re�nement adds only 40% of the elements of the isotropic re�nement, the second level grid
with anisotropic re�nement is comparable in size with the �rst level isotropic one. 77% of
the elements were re�ned anisotropically for the level 1 grid.
Figure 8 compares the cp contours for the di�erent re�ned grids with a �ne grid one based

on the 333× 65 hybrid grid which recovers the surface in all boundary nodes. It can be seen
that apart from the resolution of the shock the results are very similar, the initial grid with
7240 elements is already very good. The cp curves in the shock of the �rst level re�nements
with isotropic and anisotropic re�nement are nearly identical, at 30% extra cost, the second
level anisotropic is slightly more accurate. Since the surface is not recovered, we cannot
expect to converge towards the �ne grid solution.

3.3. Generic low pressure turbine

This example is a very coarse hexahedral grid around a generic low pressure turbine.
A cross-section at mid-span is shown in Figure 9. Close-ups of the trailing edge are shown in
Figure 10. The �ow is steady on the initial grid but becomes unsteady due to vortex shedding
around the blunt trailing edge in the adapted meshes that have a smaller arti�cial viscosity
due to the �ner mesh. This precludes a quantative comparison of the results and of the con-
vergence history. The testcase is presented to show that the adaptation algorithm does work
in three dimensions.
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Figure 8. RAE 2822 airfoil, Ma 0.725, � 2:4◦, Re 6:5× 106.
Cp distribution for adapted grids and a �ne grid.

Figure 9. Generic low pressure turbine. Grid cross section and Mach contours at half-span.

Thirty per cent of the elements have been adapted based on velocity di�erences. Table II
shows the sizes of the adapted grids. The anisotropic re�nement added only a �fth of the
elements compared to the isotropic re�nement, after bu�ering the grid size was less than half.
The second level grid with anisotropic re�nement is smaller than the isotropic �rst level one.
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Figure 10. Two levels of anisotropic re�nement compared to two levels of coarsening from the re�ned
grid. The coarsening approach results in a better multigrid sequence in the far�eld.

Table II. Generic low pressure turbine.†

Level Added hex Tet Pyr Pri Hex Total

0 95760 95760
Iso 1 201089 95545 118131 6122 279473 499271
Aniso 1 38201 57678 54796 0 122937 235411
Aniso 2 147967 150491 46 159664 458168

†The leftmost column lists the number of added elements before bu�ering, the ones to the
right the element counts of the grids after bu�ering.

Figure 10 shows the initial grid and two levels of re�nement. All of the re�nement occurred
in the boundary layer, leaving large parts of the far-�eld unchanged, favouring a combined
zonal approach for the multigrid.

4. CONCLUSIONS

An adaptation algorithm has been presented that allows anisotropic re�nement of hexahedra
and prisms without restrictions of level or order. The crucial ingredient of the algorithm is
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the de�nition of a unique surface tessellation that depends only on the hanging nodes of the
element. The insertion of a hanging node on faces that are fully re�ned on the perimeter
ensures a unique surface tessellation also in the case of re�nement in di�erent directions on
either side of the face. Using this local test it can be guaranteed that the mesh is globally
consistent.
Comparisons of the anisotropic and isotropic re�nements for various viscous �ow cases

show the e�ciency of anisotropic adaptation. The re�nement of boundary layers results in
near 80% of all elements being re�ned anisotropically. For a 3D viscous case with a very
coarse boundary layer discretisation the anisotropic strategy adds only 1

5 of the elements as
compared to the isotropic one. In both 2D and 3D the second level anisotropically re�ned
grid was comparable in size to the �rst level isotropic one.
It was also investigated how the resulting hierarchy of ‘semi-re�ned’ grids could be used

for ‘semi-coarsened’ multigrid. The re�nement sequence was compared to a sequence resulting
from applying a directional element-collapsing algorithm to the adaptively re�ned grids. It has
been shown that the two approaches have very complementary advantages and disadvantages.
The element-collapsing coarsens also in the far-�eld, but the coarsening stalls after 3–4 levels.
The inverted re�nement sequence by construction has a perfect coarsening of the boundary
layer, retaining the quality of the original grid throughout. It never coarsens beyond the initial
grid, however, leading to too �ne a grid in the far �eld. Future work will investigate the
combination of the two approaches in a zonal method.
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